jueves, 26 de septiembre de 2013

Probabilidad Condicional

Probabilidad Condicional

La probabilidad de que un evento $B$ ocurra cuando se sabe que ya ocurrio un evento $A$ se llama probabilidad condicional y se denota por MATH que por lo general se lee como probabilidad de que "ocurra B dado que ocurrió A". Esta probabilidad se define como:
MATH
La probabilidad condicional es una función de probabilidad, MATH definida como
MATH$:$$\QTR{cal}{A}$$\rightarrow $$\left[ 0,1\right] $
$B$$\mapsto $MATH
¿ Es MATH una función de probabilidad?
MATH es una función de probabilidad porque satisface los tres axiomas
Axioma I
MATH para todo evento $B$.
Como
MATH
entonces dividiendo por $P\left( A\right) $ se tiene los términos de la desigualdad se tiene
MATH
Axioma II
MATH
Como
MATH
Axioma III
Si MATH es una sucesión de eventos mutuamente excluyentes, entonces
MATH
Como
MATH
como los eventos MATHson mutuamente excluyentes, entonces los eventos MATHson también mutuamente excluyentes y así
MATH
Ejemplo
1. La antena de una instalación de radar recibe, con probabilidad $p$, una señal útil con una interferencia superpuesta, y con probabilidad $1-p$ solo la interferencia pura. Al suceder una señal útil interferida, la instalación indica la existencia de cualquier señal con probabilidad $P_{1}$, cuando aparece una interferencia pura con la probabilidad $P_{2}$. Sí la instalación ha indicado la existencia de cualquier señal, determinar la probabilidad de que esta indicación haya sido ocasionada por una señal útil con interferencia superpuesta.
Solución:
probabilidad_condicional.gif
Sean U: el evento la señal es útil con interferencia superpuesta
I : el evento la señal es útil con interferencia pura
S: el evento que indica ocurre una señal
Con base en el diagrama , la probabilidad se puede calcular así:

No hay comentarios:

Publicar un comentario